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Abstract

Devastating earthquakes can cause affected households to relocate. Post-earthquake

relocation disrupts impacted households’ social ties and, in some instances, their

access to affordable services. Simulation-based approaches that model post-

earthquake relocation decision-making can be valuable tools for supporting the de-

velopment of related disaster risk reduction policies. Yet, existing versions of these

models focus particularly on housing-related factors, which are not the sole driver of

post-earthquake relocation. We integrate data-driven approaches and local perspec-

tives to account for post-earthquake household relocation decision-making within

an existing simulation-based framework for policy-related risk-sensitive decision

support on future urban development. We use household survey data related to the

2015 Gorkha earthquakes in Nepal to develop a random forest model that estimates

post-earthquake relocation inclination of disaster-affected households. The devel-

oped model holistically captures various context-specific factors important to the

post-earthquake household relocation decision-making. We leverage the framework

to quantitatively assess the effectiveness of various disaster risk reduction policies

in reducing positive post-earthquake relocation inclination, with an explicit focus

on low-income households. We demonstrate it using a future “Tomorrowville”,

a hypothetical expanding urban extent that reflects important social and physical

characteristics of Kathmandu, Nepal. Our analyses suggest that the provision of

livelihood assistance funds is more successful when it comes to mitigating positive

post-earthquake relocation inclination than hard policies focused on strengthening

buildings (at least in the context of the examined case study). They also suggest

viable pro-poor pathways for mitigating disaster impacts without the need to create
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potentially politically sensitive income-based restrictions on policy remits.

Keywords: post-earthquake household relocation; data-driven approaches;

disaster risk reduction policies; risk-sensitive urban development; pro-poor



Abstract 4

ACKNOWLEDGMENT

We acknowledge the support of Earthquake Engineering Field Investigation

Team (EEFIT) and the Institution of Structural Engineers, through the 2022 EEFIT

Research Grant Scheme.



Contents

1 Introduction 10

2 Proposed simulation-based framework 14

2.1 Brief Description of Some Modules in the Original Framework . . . 16

2.2 Local Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Data-driven model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Social Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Computed Impact Metrics . . . . . . . . . . . . . . . . . . . . . . 18

3 A Data-driven Model 19

3.1 Description of Local Perspectives data . . . . . . . . . . . . . . . . 19

3.2 Selected Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Data Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Case-study description 26

4.1 Urban Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Policy Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Seismic Hazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Physical Infrastructure Impact . . . . . . . . . . . . . . . . . . . . 28

4.5 Social Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Results 31

6 Conclusions and future work 34



Contents 6

Bibliography 36



List of Figures

2.1 Simulation-based framework for quantitatively assessing the effec-

tiveness of DRR policies in mitigating household decisions to relo-

cate after an earthquake. . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The timeline of the Independent Impacts and Recovery Monitor-

ing (IRM) project, a five-year longitudinal study conducted by The

Asia Foundation. IRM was designed to systematically monitor

disaster-induced social impacts, recovery patterns, and disaster-

affected households’ evolving needs after two devastating earth-

quakes struck Nepal in April (M7.8) and May (M7.8) 2015. The

fourth-round data, containing 3,300 complete responses, are used

in this case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Schematic representation of the data-driven model developed in this

case study for assessing post-earthquake relocation inclination of

Nepali households. The data-driven model holistically integrates

various household-level factors, i.e., residential damage, livelihood

impact, place satisfaction, access to government funding, age of the

household head, household income group, gender of the household

head, and household size. . . . . . . . . . . . . . . . . . . . . . . . 23



List of Figures 8

4.1 The left panel shows the buildings projected to be present in To-

morrowville in 50 years, as well as the associated land use poly-

gons (TV50 total). TV50 total includes 8,713 residential buildings

and 1,443 non-residential buildings. GMFs are simulated on a 200

m × 200 m grid (marked in red) across Tomorrowville polygons.

The right panel shows the hypothetical M7.0 earthquake scenario

considered for this case study. The underlying seismic source is a

vertical strike-slip fault that ruptures 24 km, as shown in red. . . . . 27

5.1 Average damage states DSs (0 = no damage, 1 = slight damage, 2 =

moderate damage, 3 = extensive damage, 4 = complete damage) of

TV50 total buildings across the 500 sets of GMFs generated for the

considered M7.0 earthquake scenario. The top left panel shows the

results for the original TV50 total building portfolio, and the bot-

tom left panel and bottom right panel show the results for policies

#2 and #3, respectively (see Chapter 4.2 for details). . . . . . . . . . 32

5.2 The reduction in the number of households with positive relocation

inclinations under policies #1 to #3 (and no policy) averaged across

the 500 generated sets of GMFs. . . . . . . . . . . . . . . . . . . . 33

5.3 PBI j under policies #1 to #3 (and no policy) averaged across the

500 sets of generated GMFs. . . . . . . . . . . . . . . . . . . . . . 33



List of Tables

3.1 Household-level predictors considered for inclusion in the case-

study Data-driven Model. These predictors span the four cate-

gories of factors related to household relocation decision-making

identified by Paul et al. (2023). . . . . . . . . . . . . . . . . . . . . 24

4.1 Policies considered for this case study. ‘RC’ refers to reinforced

concrete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Chapter 1

Introduction

Moderate-to-large earthquake events can adversely impact vulnerable urban envi-

ronments, often resulting in significant disruptions to social and economic activi-

ties. Affected households may subsequently decide to relocate (e.g., Binder et al.,

2015), as observed following major past seismic events, e.g., the moment magnitude

(M) 6.9 Loma Prieta, California, USA, earthquake (Schwab et al., 1998), the M8.0

Wenchuan, China, earthquake (Ge et al., 2010), and the M7.8 and M7.3 Gorkha,

Nepal, earthquakes (Wilson et al., 2016; He et al., 2018). Post-disaster relocation

often causes emotional instability, distress, depression, trauma and other psycho-

logical effects among those who relocate (Bier, 2017; Makwana, 2019; Kılıç et al.,

2006). It also has long-lasting impacts on the social ties of relocated households

and, in some instances, can deprive them of access to affordable housing, health-

care, education, and employment for years and even decades after relocation (Badri

et al., 2006). Furthermore, earthquake disasters have historically led to dispro-

portionate relocations of socioeconomically vulnerable households, e.g., female-

headed households, the elderly, racial and ethnic minorities, and the urban poor

(Bier, 2017; Myers et al., 2008; Hunter, 2005; Morrow-Jones and Morrow-Jones,

1991). Inequities are further exacerbated by the additional relocation-induced im-

plications and vulnerabilities that result. Therefore, stakeholders (e.g., urban plan-

ners, recovery planners, and emergency response authorities) must devise strategic

disaster risk reduction (DRR) policies for mitigating positive post-earthquake relo-

cation decision-making.
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Simulation-based modelling approaches that capture post-earthquake reloca-

tion decision-making are useful tools that complement empirical studies in support-

ing the design of such DRR policies (e.g., Costa and Baker, 2022; Moradi and Nejat,

2020). For instance, Miles and Chang (2011) developed the ResilUS computational

model based on fragility models and Markov chains to simulate community-based

post-disaster housing recovery. ResilUS models households’ decisions to leave or

stay accounting for factors predominantly related to housing reconstruction (e.g.,

the debt incurred by housing repairs and the availability of temporary housing until

housing repairs are finished). Nejat and Damnjanovic (2012) proposed an agent-

based model using game theory to predict homeowners’ decision-making (i.e., stay

and repair or sell and leave) based on their neighbourhood’s average reconstruc-

tion value and the predicted future reconstruction value. Moradi and Nejat (2020)

presented the RecovUS spatial agent-based model to simulate households’ decision-

making (e.g., stay and repair, stay and wait for repairs, sell and leave) accounting

for various factors, e.g., income, race, education, residential building damage, fi-

nancial assistance, restoration of community assets and infrastructure, and neigh-

bours’ repair progress. Households are assumed to stay and repair if they have

abundant financial resources to cover repair costs. Costa et al. (2022a) proposed

an agent-based model for assessing temporary displacement and permanent reloca-

tion decision-making of households that centres on aspects related to the immediate

built environment, e.g., availability of water and electricity, neighbourhood condi-

tions, housing repair progress, neighbours’ decisions, and socioeconomic factors.

Costa et al. (2022b) further integrated place attachment (classified as “low” if both

neighbourhood and housing satisfaction are below a certain threshold) into assess-

ing households’ decisions to stay and repair or relocate. Low-income households,

renters and those occupying old buildings were identified as most likely to have low

place attachment and, therefore, most prone to relocation (at least within the context

of the San Francisco, California, USA, case study considered).

Thus, most existing simulation-based models for post-earthquake household

relocation decision-making focus mainly on housing-related factors, including but
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not limited to the duration and costs of housing repairs, whether or not the house-

hold can afford these costs, and the availability and affordability of temporary hous-

ing while their home is under repair. This means that the models either neglect or

do not give adequate attention to alternative factors that can motivate or discour-

age households from relocating, e.g., earthquake-induced livelihood impact. Many

of these models have not been validated with empirical data or are only partially

calibrated using highly aggregated relocation patterns observed after past earth-

quake events (Miles and Chang, 2011; Nejat and Damnjanovic, 2012; Costa et al.,

2022a,b). Therefore, further research is needed to improve the understanding and

modelling of post-earthquake household relocation decision-making.

We aim to address this challenge using a data-driven modelling approach that

integrates a holistic range of context-specific factors to estimate post-earthquake

household relocation decision-making. Data-driven approaches (e.g., logistic re-

gression, random forest, regression kriging) have been previously used in the liter-

ature to develop models for assessing (Nejat and Ghosh, 2016; Nejat et al., 2020;

Loos et al., 2023; Rosenheim et al., 2021; Costa et al., 2022c) or identifying factors

related to (Myers et al., 2008; Zhang and Peacock, 2009; Binder et al., 2015) house-

holds’ post-disaster behaviours as well as to track business recovery (Costa and

Baker, 2021) and to estimate post-earthquake damage (Loos et al., 2020). However,

these studies either (1) did not explicitly focus on relocation; or (2) considered data

at more aggregated resolution (i.e., neighbourhood- or county-level) than individual

households; (3) predominantly centred on the aftermath of wind-hazard events (e.g.,

hurricane) rather than (potentially more devastating) earthquake disasters; and (4)

developed models specifically targeted at high-income locations that may not re-

flect Global South contexts. The proposed data-driven model, which overcomes

these limitations, is integrated into an existing framework for policy-related risk-

sensitive decision support on future urban development (Wang et al., 2023). The

resulting enhanced framework can then be used to quantify the effectiveness of

various DRR policies in mitigating households’ decisions to relocate after an earth-

quake, with an explicit focus on the extent to which low-income households are
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impacted. We use Nepali household survey data related to the 2015 M7.8 and M7.3

Gorkha earthquakes to develop the required data-driven model. We leverage the

model to demonstrate the enhanced framework using the “Tomorrowville” virtual

urban testbed, which closely reflects important physical and social characteristics

of Kathmandu.

We structure this chapter as follows. We introduce the enhanced simulation-

based framework in Chapter 2. We describe the Data-driven Model developed for

the case study in Chapter 3, present the case study application in Chapter 4, and

provide results in Chapter 5. Finally, we offer some concluding remarks in Chapter

6.



Chapter 2

Proposed simulation-based

framework

We advance the existing framework proposed in Wang et al. (2023) to explicitly

account for post-earthquake household relocation decision-making, as shown in

Figure 2.1. The original Wang et al. (2023) framework leveraged the Tomorrow’s

Cities Decision Support Environment (Cremen et al., 2023) and facilitated the de-

velopment of compulsory household-level financial soft policies (e.g., insurance,

tax relief) for reducing disaster risk in expanding urban areas. The enhanced frame-

work encompasses seven modules: (1) Policy Bundles; (2) Urban Planning; (3)

Local Perspectives; (4) Seismic Hazard; (5) Physical Infrastructure Impact; (6)

Social Impact; and (7) Computed Impact Metrics. (1), (2), (4), (5), (6), and (7)

are modified versions of modules within the original framework. The characterisa-

tion of post-earthquake household relocation decision-making is facilitated by the

new Local Perspectives module and its accompanying Data-driven Model.

Stakeholders first design disaster risk reduction (DRR) policies (in the Policy

Bundles module) and apply these policies to a (conditional) urban plan associated

with a specific time instance (in the Urban Planning module), both of which col-

lectively produce a Visioning Scenario. A Visioning Scenario represents an ur-

ban system at a snapshot in time. While this could be the current version of the

urban system, it is intended for the framework to be used in a forward-looking

manner. The information stored in the Visioning Scenario and Local Perspec-
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tives informs the calculations of modules (4) to (6), which collectively comprise

the Computational Model. Modules (4) to (6) produce seismic hazard calcula-

tions, physical infrastructure impacts, and social impacts, respectively. The Local

Perspectives module provides relevant context-specific information on household

relocation decision-making. This information informs the development of a Data-

driven Model, which is used within the Social Impact module to estimate whether

households decide to relocate or stay. These estimations are then translated into

a Poverty Bias Indicator (PBI), which measures the extent to which low-income

households disproportionately decide in favour of relocation. Each iteration of the

framework produces an assessment of impacts for one specific Visioning Scenario.

The optimal Visioning Scenario is the one that produces the lowest PBI. We use

Monte Carlo sampling to capture uncertainties within modules (4) to (6), in line

with Cremen et al. (2022). Most modules introduced in Wang et al. (2023) are only

briefly discussed. Described in detail are the newly introduced Local Perspectives

module and the accompanying Data-driven Model, the enriched Social Impact

module, and the Computed Impact Metrics that depend on the Social Impact

module.
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• ‘Hard’ policies

URBAN PLANNING
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hazard simulation
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capacities § Use of the data-driven model to 

predict households’ relocation 
decisions
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making
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home workplace
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Collective relocation decisions 
per income group, 𝐼$,#

Figure 2.1: Simulation-based framework for quantitatively assessing the effectiveness of
DRR policies in mitigating household decisions to relocate after an earthquake.

2.1 Brief Description of Some Modules in the Origi-

nal Framework
The Urban Planning module contains an urban plan that provides detailed infor-

mation on land use, buildings, households and individuals associated with a specific

urban area at a prescribed time (possibly in the future, Menteşe et al., 2023). Within

the context of the proposed enhanced framework, the Policy Bundles module en-

compasses one or more DRR policies that broadly aim at mitigating decisions to

relocate after an earthquake. These policies could be ‘soft’ (e.g., post-earthquake

livelihood assistance funds) as well as ‘hard’ (e.g., upgrading of existing infras-

tructure facilities to higher building codes). For this particular study, the Seismic
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Hazard module stores the seismic source and rupture features of a specific earth-

quake event (scenario). It estimates the resulting ground-motion intensity measures

(IMs) at the locations of exposed assets (e.g., buildings), i.e., ground-motion fields

(GMFs). The Physical Infrastructure Impact module uses the GMF outputs from

the Seismic Hazard module in combination with fragility models to estimate phys-

ical damage to buildings. This damage is represented as a discrete damage state

(DS). The reader is referred to Sections 2.1 to 2.4 in Wang et al. (2023) for more

details on these modules.

2.2 Local Perspectives
We integrate Local Perspectives to allow for context-specific people-centred char-

acterisation of post-earthquake household relocation decision-making. The Local

Perspectives module includes information (e.g., household relocation survey data,

government reports, social media information) on how various local factors (e.g.,

socioeconomic features) relate to household relocation decisions. This knowledge

is then used to calibrate a predictive Data-driven Model for relocation decision-

making.

2.3 Data-driven model
The Data-driven Model estimates post-earthquake household relocation decisions.

The post-earthquake relocation decision for the hh-th household in the j-th Monte

Carlo sample, Ihh, j, is binary. Ihh, j = 1 means the hh-th household decides to relo-

cate and Ihh, j = 0 indicates otherwise. It is developed by applying statistical learning

methods (e.g., logistic regression, random forests) to the Local Perspectives data.

The Data-driven Model is therefore inherently context-specific, enabling a more

accurate characterisation of post-earthquake household relocation decision-making

compared to generic, heuristic models.

2.4 Social Impact
The Social Impact module uses outputs from the Physical Infrastructure Impact

module and leverages the Data-driven Model to capture the post-earthquake re-
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location decision-making of each household (Ihh, j), considering the policies that

feature within the Policy Bundles module. This module further computes collec-

tive relocation decisions made by households across different income groups (Ix, j).

Ix, j for the j-th Monte Carlo sample is computed as:

Ix, j =
∑ Ihh, j,x

nx
(2.1)

where x refers to low- (low), middle- (mid), high- (high), or all- (all) income groups,

Ihh, j,x is the hhth household relocation decision associated with income group x, and

nx is the total number of households within income group x.

2.5 Computed Impact Metrics
The Computed Impact Metrics module translates the Ix, j outputs from the Social

Impact module into a single-valued PBI j, which measures the extent to which low-

income households disproportionately decide in favour of relocation. That is:

PBI j =
Ilow, j

Iall, j
−1 (2.2)

A negative value of PBI j implies that the policies within the Policy Bundles

module (and thus the associated Visioning Scenario) are pro-poor, i.e., the specific

earthquake scenario considered does not result in a disproportionate number of de-

cisions to relocate among low-income households. See Section 2.6 in Wang et al.

(2023) for more details on PBI.



Chapter 3

A Data-driven Model

We demonstrate the Local Perspectives module by developing a Data-driven

Model to characterise the relocation inclination of Nepali households after the

2015 M7.8 and M7.3 Gorkha earthquakes. The model estimates relocation incli-

nation (i.e., willingness to relocate) as a proxy for a more definitive relocation de-

cision, due to the constraints of the Local Perspectives dataset used (see Chapter

3.1). This dataset comprises household-level survey data related to the 2015 Gorkha

earthquakes, which were collected in the 11 districts most affected by these events

outside of the Kathmandu Valley. We note the model is developed specifically for

households in Kathmandu, and should not be used outside this remit without fur-

ther context-specific investigations (involving information on local perspectives).

The Data-driven Model is a random forest model (Breiman, 2001). This type of

model is suitable for estimating post-earthquake household relocation inclinations

for two reasons: (1) it does not require any assumption to be made on the proba-

bility distributions of data; and (2) as a tree-based method, it can naturally handle

both categorical and continuous data (Breiman, 2001). The model’s outcome is the

probability of each household having positive inclination to relocate. Details on the

development of the data-driven model can be found in Wang et al. (2024).

3.1 Description of Local Perspectives data
The Local Perspectives data are derived from the results of the Independent Im-

pacts and Recovery Monitoring (IRM) project, a longitudinal study conducted by
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The Asia Foundation to systematically monitor disaster-induced social impacts, re-

covery patterns, and disaster-affected households’ evolving needs after two devas-

tating earthquakes struck Nepal in April (M7.8) and May (M7.3) 2015 (The Asia

Foundation, 2019). The IRM project team revisited the same disaster-affected

households and asked them similar questions over a five-year duration following

the disaster (see Figure 3.1). Questions included, for instance, “to what extent was

your livelihood affected by the earthquake?”, “do you or anyone else in your house-

hold plan to migrate in the next 12 months?” (which captures household reloca-

tion inclination),“how satisfied are you with the electricity?”, “approximately how

much damage has the earthquake caused to your house?”, “how much of the NPR

300,000 grant (from the National Reconstruction Authority) have you received at

this point?”, and “what is your household’s source of income?”

In this study, we adopt the fourth-round survey data (collected in April 2017;

The Asia Foundation, 2017) - as opposed to previous survey rounds conducted dur-

ing the emergency response (The Asia Foundation, 2015) and the early recovery

phase (The Asia Foundation, 2016a,b) when temporary displacement was the dom-

inant migration pattern (The Asia Foundation, 2016b) - to focus on long-term house-

hold relocation inclination. We do not adopt the fifth-round survey data (collected

between September and October 2019; The Asia Foundation, 2019) because any

household relocation inclination observed at that point was not likely to be associ-

ated with the earthquakes in question given that “[t]he economy recovered in three

years, 90% of people were back in their homes after four years, and . . . infrastructure

and non-domestic constructions took five years to rebuild and repair” (Platt et al.,

2020).
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Longitudinal Survey

M7.8 Earthquake

M7.3 Aftershock

25 Apr. 2015 

12 May 2015 

Round 1
Jun. 2015 

Feb. to Mar. 2016 

Sep. 2016 

Apr. 2017 

Sep. to Oct. 2019 

Round 2

Round 3

Round 4

Round 5

IRM Household 
Recovery Data 3,300 households 

analysed

Figure 3.1: The timeline of the Independent Impacts and Recovery Monitoring (IRM)
project, a five-year longitudinal study conducted by The Asia Foundation. IRM
was designed to systematically monitor disaster-induced social impacts, recov-
ery patterns, and disaster-affected households’ evolving needs after two dev-
astating earthquakes struck Nepal in April (M7.8) and May (M7.8) 2015. The
fourth-round data, containing 3,300 complete responses, are used in this case
study.

The fourth-round survey data include information on the respondent (e.g., age,

income, gender, profession, broad ethnicity group, educational attainment) as well

as their household-level characteristics (e.g., household size, annual household in-

come). The survey data contain responses from 4,854 households. Excluding

households with “unknown” residential damage or “unknown” status of access to

government funding leads to a total of 3,300 complete responses (samples), which

are used to develop the model. Among these responses, only 154 households are

deemed to have had an inclination to relocate.

3.2 Selected Predictors
We first select a set of household-level predictors to include in the Data-driven

Model, based on an extensive literature review of relocation following historical

disruptive events (e.g., Myers et al., 2008; Peacock et al., 2014; Comerio, 2014;

Badri et al., 2006; Fussell et al., 2010; Ge et al., 2010; Henry, 2013; He et al., 2018,

etc.) including the 2015 Gorkha earthquakes, and broader studies on resilience and

social vulnerability (e.g., Cutter et al., 2010, 2003, etc.).

The review identifies numerous factors influencing household relocation

decision-making (and therefore likely to be related to relocation inclination). These

factors vary in prominence across different contexts (Paul et al., 2023; Henry,

2013), highlighting the importance of using bespoke models for characterising
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household relocation decision-making. Paul et al. (2023) grouped these factors into

four broad categories: housing matters, financial aspects, social and community

aspects, and demographics. Housing matters include housing (residential) damage,

housing type (e.g., single-family or multi-family), tenure time or hometown status

(which is also used by Nejat and Ghosh, 2016, as a proxy for place attachment).

Financial aspects include property damage losses, whether the property is insured,

and availability of external financial assistance such as government aids, grants,

and loans (Alisjahbana et al., 2022). Social and community aspects include family

and relationships, livelihood, neighbourhood damage level, place satisfaction, etc.

Demographics include housing tenure (i.e., renters or owners), income, age, gender,

race and ethnicity, educational attainment, etc.

The eight predictors (see Figure 3.2) selected are residential damage, access to

government funding (from the National Reconstruction Authority of Nepal), liveli-

hood impact, place satisfaction, household income group, gender of the household

head, age of the household head, and household size. Table 3.1 provides descrip-

tions of these predictors and examples of literature that support their inclusion in

the model.
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Household 
income group

Gender of the 
household head

Age of the 
household head

Household 
demographics

Earthquake-induced 
household-level 

livelihood impact

Social and community 
aspectsHousing

matters

Residential 
damage

Household
relocation
inclination

Physical 
infrastructure impact

Household
socio-demographics

Policy 
bundles

Data-driven Model

Household-level 
place satisfaction

Financial
aspects

Access to 
government 

funding

Household size

Figure 3.2: Schematic representation of the data-driven model developed in this case study
for assessing post-earthquake relocation inclination of Nepali households. The
data-driven model holistically integrates various household-level factors, i.e.,
residential damage, livelihood impact, place satisfaction, access to government
funding, age of the household head, household income group, gender of the
household head, and household size.
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Table 3.1: Household-level predictors considered for inclusion in the case-study Data-
driven Model. These predictors span the four categories of factors related to
household relocation decision-making identified by Paul et al. (2023).

Category Predictor Description Literature
Housing
matters

Residential
damage

Whether the residence was
damaged by the earthquakes.
Possible categorical values:
0 (not damaged) and 1 (dam-
aged).

Costa et al. (2022a); My-
ers et al. (2008); Fussell
et al. (2010); Peacock et al.
(2014)

Financial
aspects

Access
to gov-
ernment
funding

Whether the household has
received a reconstruction
grant from the National
Reconstruction Authority of
Nepal. Possible categorical
values: 0 (not received) and
1 (received).

Comerio (2014); Alisjah-
bana et al. (2022); Kotani
et al. (2020); Hamideh and
Sen (2022)

Social
and com-
munity
aspects

Livelihood
impact

Whether the livelihood of the
household was impacted by
the earthquakes. Possible
categorical values: 0 (not im-
pacted) and 1 (impacted).

Bolin and Bolton (1983);
Wang et al. (2015); Henry
(2013); Zhang and Peacock
(2009); Cong et al. (2018);
Comerio (2014); He et al.
(2018)

Place sat-
isfaction

Whether the household is
currently satisfied with its
electricity and drinking water
supply, schools, medical fa-
cilities, and roads. Possible
categorical values: 0 (not sat-
isfied) and 1 (satisfied).

Lu (1998); Tan (2016);
Costa et al. (2022b); Speare
(1974)

Household
demo-
graphics

Household
income
group

Possible categorical values:
1 (monthly income lower
than 20,000 Rs, i.e., low-
income), 2 (monthly in-
come between 20,000 and
40,000 Rs, i.e., middle-
income), and 3 (monthly in-
come above 40,000 Rs, i.e.,
high-income).

(Cutter et al., 2003; Myers
et al., 2008; Morrow-Jones
and Morrow-Jones, 1991;
Ardayfio-Schandorf, 2012;
Appeaning Addo, 2013;
Addo, 2016)

Gender of
the house-
hold head

Possible categorical values:
1 (female) and 2 (male).

(Cutter et al., 2003; Myers
et al., 2008; Morrow-Jones
and Morrow-Jones, 1991)

Age of the
household
head

Possible integer values: inte-
gers greater than 18.

Anton and Lawrence
(2014); Nejat and Ghosh
(2016); Clark et al. (2017);
Speare (1974); Cutter et al.
(2003)

Household
size

The number of individuals
within the household. Pos-
sible integer values: positive
integers.

(Cutter et al., 2003; Xu
et al., 2017; Durage et al.,
2014)
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3.3 Data Derivation
The information required to characterise the predictors is then obtained from the

IRM survey data. Positive relocation inclination is assigned to households that re-

port at least one member currently planning to migrate in their responses to ques-

tion D22. Residential damage is obtained from responses to question B1. House-

hold size, gender of the household head, and age of the household head are ob-

tained from responses to demographic questions (not numbered), assuming that

the survey respondent is the household head. This assumption is justified, given

that the survey respondent eligibility criteria stipulate that the respondent “plays

an important role in the decision-making process in the family.” We assume the

earthquakes impacted the livelihoods of households who indicated that their jobs

were “completely affected” or “somewhat affected” (for question C2). Data on ac-

cess to government funding is obtained from responses to question F14. For place

satisfaction, we assume households who indicated for question E2 that they were

“somewhat dissatisfied” or “dissatisfied” with electricity, water, schools, medical

facilities, or motorable roads are not satisfied. Household income group informa-

tion is obtained by merging the income brackets reported by respondents for ques-

tion A9 as follows: a low-income household has a monthly income lower than

20,000 Rs, a middle-income household has a monthly income between 20,000 Rs

and 40,000 Rs, whereas a high-income household has a monthly income above

40,000 Rs. These income groupings are determined based on the average monthly

Nepali household income of 30,121 Rs (27,511 Rs for rural households and 32,336

Rs for urban households; Nepal in Data, 2018).



Chapter 4

Case-study description

We leverage the enhanced simulation-based framework to investigate the effect

of different disaster policies on mitigating post-earthquake relocation inclination

across households in the 11 districts most affected by the 2015 Gorkha earthquakes

outside of the Kathmandu Valley, Nepal, using the Data-driven Model developed

in Chapter 3. We adopt the Tomorrowville expanding virtual urban testbed as our

case-study region (Menteşe et al., 2023), which was largely developed based on

data from the Kathmandu Valley, recognising the effectiveness of virtual testbeds

as neutral spaces for testing community resilience analysis tools (Amin Enderami

et al., 2022).

4.1 Urban Planning
We use the TV50 total version of Tomorrowville, which includes 4,810 existing

buildings in today’s Tomorrowville (TV0) and 5,346 new buildings anticipated to

be built in 50 years (TV50 b2) as a result of rapid urban expansion, shown in the left

panel of Figure 4.1. TV50 total contains 8,713 residential buildings and 1,443 non-

residential (e.g., commercial, industrial, agricultural, mix-use) buildings. These

buildings consist of 11 construction types; new buildings to be built in TV50 b2

are, on average, much stronger and more ductile than existing buildings in TV0

(see Gentile et al., 2022; Wang et al., 2023, for more details). There are three

types of residential polygons (low-, middle-, and high-income; see the left panel of

Figure 4.1). Households within the same polygon all belong to the same income
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group. TV50 total includes 6,766, 3,059, and 7,985 low-income, middle-income,

and high-income households, respectively. See Chapter 3.1 in Wang et al. (2023)

for more details on TV50 total.

Figure 4.1: The left panel shows the buildings projected to be present in Tomorrowville in
50 years, as well as the associated land use polygons (TV50 total). TV50 total
includes 8,713 residential buildings and 1,443 non-residential buildings. GMFs
are simulated on a 200 m × 200 m grid (marked in red) across Tomorrowville
polygons. The right panel shows the hypothetical M7.0 earthquake scenario
considered for this case study. The underlying seismic source is a vertical
strike-slip fault that ruptures 24 km, as shown in red.

4.2 Policy Bundles
We consider four DRR policies for mitigating post-earthquake household reloca-

tion inclination in TV50 total (see Table 4.1). Policy #1, which provides livelihood

assistance funds to households in which at least one member is made unemployed

by an earthquake event, is a ‘soft’ (and compensatory) policy. We assume that this

policy eradicates the effect of livelihood impact on household relocation inclina-

tion. The other policies, which involve upgrading the most vulnerable TV0 resi-

dential buildings to higher building codes, are ‘hard’ (and corrective). Policy #3 is
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income-based (i.e., targets only low-income households) and is designed to explic-

itly facilitate pro-poor outcomes. Policies #2 and #3 demand intensive resources to

improve the seismic vulnerability of 2,666 and 2,248 buildings, respectively. Note

that relevant buildings that act as both workplaces and residences are upgraded un-

der policies #2 and #3.

Table 4.1: Policies considered for this case study. ‘RC’ refers to reinforced concrete.

Policy Type Description
#1 Soft &

compensatory
Provides livelihood assistance funds to households in
which at least one member is made unemployed by an
earthquake

#2 Hard &
corrective

Replaces non-RC residential buildings (2,666 buildings
in total) with high-code RC buildings

#3 Hard &
corrective

Replaces non-RC low-income residential buildings
(2,248 buildings in total) with high-code RC buildings

4.3 Seismic Hazard
We consider a fictitious M7.0 earthquake scenario on a hypothetical vertical strike-

slip fault through Tomorrowville (shown on the right panel of Figure 4.1), given

the synthetic nature of the case-study testbed. We use the ground-motion model in

Campbell and Bozorgnia (2014) and the spatial and cross-IM (intensity measure)

correlation model in Markhvida et al. (2018) to simulate spatial cross-correlated

GMFs across a 200m × 200m grid of Tomorrowville (as shown on the left panel

of Figure 4.1). We use Monte Carlo sampling to simulate 500 sets of GMFs for

different IMs required by the considered fragility models (see Table 5 in Wang et al.,

2023). Five hundred simulations are deemed appropriate, as this number produces

stable social impact assessment results (see Chapter 5 for details). Ground-motion

IM values for each building are taken to be those simulated at the nearest grid point.

4.4 Physical Infrastructure Impact
We use fragility models associated with each building type to compute the damage

state (DS) of each building, conditional on the simulated IM values (outputs of

the Seismic Hazard module). See Gentile et al. (2022) for details on the fragility
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models associated with Tomorrowville’s buildings. The exact fragility models used

are influenced by the three hard policies included in the Policy Bundles module.

The DS damage classification of the fragility models is translated to a binary

residential damage classification to comply with the required input format of the

Data-Driven Model. DS = 0 (“no damage”) is mapped to Residential damage

= 0, representing “not damaged”. DS = 1 (“slight damage”), DS = 2 (“moderate

damage”), DS = 3 (“extensive damage”), and DS = 4 (“complete damage”) are

mapped to Residential damage = 1, representing “damaged” (FEMA, 2022).

4.5 Social Impact

The Social Impact module uses information from the Physical Infrastructure Im-

pact module (i.e., the DS of each building and the converted residential damage

classification), the Urban Planning module (e.g., the workplace buildings where

employed individuals work, the age and gender of the household head, household

income group, and household size), and the Policy Bundles module (i.e., how

constituent policies affect the earthquake-induced household-level livelihood im-

pact and residential building DS of each household) to quantify earthquake-induced

household-level livelihood impact and the availability of government funding.

We assume that workplace buildings with at least extensive damage (DS ≥ 3)

cannot function, so the livelihoods of individuals working in these buildings are

impacted. A household’s livelihood is deemed to be impacted if the livelihoods of

one or more of its employed members are impacted. We assume households with

complete or extensive damage (DS ≥ 3) to their residences will be provided with

government funding. This assumption is consistent with the eligibility criteria for

the reconstruction grant by the National Reconstruction Authority of Nepal after the

2015 Gorkha earthquakes (International, 2017).

We randomly assign low place satisfaction to 40.7% high-income, 39.9%

middle-income, and 34.6% low-income households, in line with the respective pro-

portions of each income group associated with low place satisfaction in the house-

hold survey data used (see Chapter 3.1 for details). Note that the relatively higher
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place satisfaction of low-income households is consistent with observations in the

literature. For example, Adriaanse (2007) found that low-income households are

usually associated with low residential mobility (e.g., Ardayfio-Schandorf, 2012;

Appeaning Addo, 2013). They build up habitual routines over time and become

psychologically fused with their residences, thereby having positive place satisfac-

tion (Addo, 2016).

This module finally leverages the Data-driven Model to compute the prob-

ability of having a positive relocation inclination for each TV50 total household

across each GMF (i.e., Monte Carlo sample). We use a different random threshold

value between 0 and 1 to translate this probability into a binary outcome (Ihh, j = 0

or Ihh, j = 1) for each Monte Carlo sample; Ihh, j = 1 is assigned if the probability

exceeds the threshold value and vice versa.



Chapter 5

Results

Figure 5.1 displays the damage states (DSs) of Tomorrowville buildings averaged

across the 500 sets of GMFs generated for the considered M7.0 earthquake scenario

and four building portfolios: the original TV50 total building portfolio (top left

panel) and two upgraded building portfolios associated with #2 (bottom left panel),

and #3 (bottom right panel), respectively. The majority of buildings to be replaced

under policy #2 are in the low-income polygons. This explains why the policy

noticeably reduces the positive difference between the average DSs of buildings in

the low-income polygons and those in the middle- and high-income polygons.

Figure 5.2 shows the reduction in the number of households with positive relo-

cation inclinations under policies #1 to #3 (and no policy), averaged across the 500

sets of GMFs. Policy #1 (soft and compensatory) is the most effective in mitigat-

ing positive post-earthquake relocation inclination across all income groups. Policy

#3, which is a subset of policy#2, leads to the smallest reduction in the number of

households with positive relocation inclination.

Figure 5.3 shows for all policies (and no policy) the PBI j averaged across the

500 sets of generated GMFs. All policies lead to some reduction in PBI j. Policy #3

is overall the most pro-poor (i.e., it has the largest number of negative average PBI j

values) among those considered in this case study. This is expected given the low-

income remit of policy #3. Policy #1, a soft and compensatory policy that does not

differentiate based on income, is associated with an overall negative PBI j, making

it the second most pro-poor policy among those considered.
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Figure 5.1: Average damage states DSs (0 = no damage, 1 = slight damage, 2 = moderate
damage, 3 = extensive damage, 4 = complete damage) of TV50 total buildings
across the 500 sets of GMFs generated for the considered M7.0 earthquake sce-
nario. The top left panel shows the results for the original TV50 total building
portfolio, and the bottom left panel and bottom right panel show the results for
policies #2 and #3, respectively (see Chapter 4.2 for details).
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Figure 5.2: The reduction in the number of households with positive relocation inclinations
under policies #1 to #3 (and no policy) averaged across the 500 generated sets
of GMFs.

Figure 5.3: PBI j under policies #1 to #3 (and no policy) averaged across the 500 sets of
generated GMFs.



Chapter 6

Conclusions and future work

We present a new approach for assessing the effectiveness of DRR policies in miti-

gating positive post-earthquake relocation decision-making. The approach involves

enriching an existing framework that integrates social and physical considerations

for risk-informed policy design (Wang et al., 2023) with local perspectives and an

accompanying data-driven model for estimating context-specific post-earthquake

household relocation decision-making.

We develop a random forest data-driven model using local perspectives in the

form of Nepali household survey data collected in the wake of the 2015 M7.8 and

M7.3 Gorkha earthquakes, to assess post-earthquake relocation inclinations of local

households. This model accounts for various household-level factors related to post-

earthquake household relocation decision-making, i.e., residential damage, liveli-

hood impact, place satisfaction, access to government funding, age of the household

head, household income group, gender of the household head, and household size.

In light of the general lack of (data-driven) models focusing on household relocation

inclination (or decision-making), the model developed here serves as a novel risk-

sensitive planning tool that provokes discussion on a complex multi-disciplinary

social phenomenon.

We demonstrate the enhanced framework and the data-driven model devel-

oped by assessing the effects of multiple DRR policies for an expanding virtual

urban testbed Tomorrowville, which is largely informed by data from the Kath-

mandu Valley, Nepal. We particularly focus on the extent to which the policies miti-
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gate positive post-earthquake relocation inclination among low-income households.

The case study reveals that a soft policy of post-disaster livelihood assistance pro-

vision for all households impacted by earthquake-induced unemployment (policy

#1) is more effective in mitigating positive post-earthquake relocation inclination

than hard policies centred on the seismic strengthening of physical infrastructure

(policies #2 and #3). This emphasises the fact that hard strategies, consisting of

resource-intensive engineering interventions, might not always be the most effec-

tive seismic risk reduction solution for urban areas exposed to seismic hazard. We

also find that policy #1 is pro-poor overall (i.e., has a negative mean PBI j value),

despite providing assistance to households of all income groups. While this finding

is limited to the case study’s specific context, it suggests that opportunities exist for

designing pro-poor DRR policies without the need to explicitly account for income

thresholds, which can be politically sensitive (Lyon and Sepulveda, 2009).

Our framework is explicitly forward-looking, i.e., it quantifies earthquake risks

of urban communities accounting for uncertain future development in yet-to-be ur-

banised regions. Many of these regions (e.g., the Kathmandu Valley, Nepal) are

experiencing rapid expansion and population growth, which could significantly in-

tensify natural-hazard exposure and vulnerability in the absence of risk-sensitive

planning tools and policies like those proposed here (Mesta et al., 2022, 2023). A

forward-looking perspective is particularly important for designing DRR policies

related to post-earthquake household relocation decision-making; our framework

can help to prevent relocation-related accumulation of vulnerabilities from the out-

set and address the root causes of exacerbating inequalities in the wake of a future

earthquake disaster.



Bibliography

Irene Appeaning Addo. Assessing residential satisfaction among low income house-

holds in multi-habited dwellings in selected low income communities in accra.

Urban Studies, 53(4):631–650, 2016.

CCM Adriaanse. Measuring residential satisfaction: a residential environmental

satisfaction scale (ress). Journal of housing and the built environment, 22(3):

287–304, 2007.

Irene Alisjahbana, Ana Moura-Cook, Rodrigo Costa, and Anne Kiremidjian. An

agent-based financing model for post-earthquake housing recovery: Quantifying

recovery inequalities across income groups. Earthquake Spectra, 38(2):1254–

1282, 2022.

S Amin Enderami, Ram K Mazumder, Meredith Dumler, and Elaina J Sutley. Vir-

tual testbeds for community resilience analysis: State-of-the-art review, consen-

sus study, and recommendations. Natural Hazards Review, 23(4):03122001,

2022.

Charis E Anton and Carmen Lawrence. Home is where the heart is: The effect of

place of residence on place attachment and community participation. Journal of

Environmental Psychology, 40:451–461, 2014.

Irene Appeaning Addo. Perceptions and acceptability of multihabitation as an urban

low income housing strategy in greater accra metropolitan area, ghana. In Urban

Forum, volume 24, pages 543–571. Springer, 2013.



BIBLIOGRAPHY 37

Elizabeth Ardayfio-Schandorf. Urban families and residential mobility in accra.

The mobile city of Accra: Urban families, housing and residential practices,

pages 47–72, 2012.

S Ali Badri, Ali Asgary, AR Eftekhari, and Jason Levy. Post-disaster resettlement,

development and change: a case study of the 1990 manjil earthquake in iran.

Disasters, 30(4):451–468, 2006.

Vicki Marion Bier. Understanding and mitigating the impacts of massive relocations

due to disasters. Economics of disasters and climate change, 1(2):179–202, 2017.

Sherri Brokopp Binder, Charlene K Baker, and John P Barile. Rebuild or relo-

cate? resilience and postdisaster decision-making after hurricane sandy. Ameri-

can journal of community psychology, 56(1):180–196, 2015.

Robert C Bolin and Patricia Bolton. Recovery in nicaragua and the usa. Interna-

tional Journal of Mass Emergencies and Disasters, 1(1):125–144, 1983.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Kenneth W Campbell and Yousef Bozorgnia. Nga-west2 ground motion model for

the average horizontal components of pga, pgv, and 5% damped linear accelera-

tion response spectra. Earthquake Spectra, 30(3):1087–1115, 2014.

William AV Clark, Ricardo Duque-Calvache, and Isabel Palomares-Linares. Place

attachment and the decision to stay in the neighbourhood. Population, space and

place, 23(2):e2001, 2017.

Mary C Comerio. Disaster recovery and community renewal: Housing approaches.

Cityscape, 16(2):51–68, 2014.

Zhen Cong, Ali Nejat, Daan Liang, Yaolin Pei, and Roxana J Javid. Individual

relocation decisions after tornadoes: a multi-level analysis. Disasters, 42(2):

233–250, 2018.



BIBLIOGRAPHY 38

Rodrigo Costa and Jack Baker. Smote–lasso model of business recovery over time:

Case study of the 2011 tohoku earthquake. Natural Hazards Review, 22(4):

04021038, 2021.

Rodrigo Costa and Jack W. Baker. Challenges and opportunities in post-disaster

housing recovery simulations. In Proceedings 12th National Conference on

Earthquake Engineering. EERI, 2022.

Rodrigo Costa, Terje Haukaas, and Stephanie E Chang. Predicting population dis-

placements after earthquakes. Sustainable and Resilient Infrastructure, 7(4):253–

271, 2022a.

Rodrigo Costa, Chenbo Wang, and Jack W Baker. Integrating place attachment into

housing recovery simulations to estimate population losses. Natural Hazards

Review, 23(4):04022021, 2022b.

Rodrigo Costa, Chenbo Wang, and Jack W. Baker. Logistic models linking house-

hold recovery capacity to demographic characteristics. In Proceedings of the 13th

International Conference on Structural Safety and Reliability. ICOSSAR, 2022c.

Gemma Cremen, Carmine Galasso, and John McCloskey. A simulation-based

framework for earthquake risk-informed and people-centered decision making

on future urban planning. Earth’s Future, 10(1):e2021EF002388, 2022.

Gemma Cremen, Carmine Galasso, John McCloskey, Alejandro Barcena, Mag-

gie Creed, Maria Evangelina Filippi, Roberto Gentile, Luke T Jenkins, Mehmet

Kalaycioglu, Emin Yahya Mentese, et al. A state-of-the-art decision-support en-

vironment for risk-sensitive and pro-poor urban planning and design in tomor-

row’s cities. International Journal of Disaster Risk Reduction, 85:103400, 2023.

Susan L Cutter, Bryan J Boruff, and W Lynn Shirley. Social vulnerability to envi-

ronmental hazards. Social science quarterly, 84(2):242–261, 2003.

Susan L Cutter, Christopher G Burton, and Christopher T Emrich. Disaster re-



BIBLIOGRAPHY 39

silience indicators for benchmarking baseline conditions. Journal of homeland

security and emergency management, 7(1), 2010.

Samanthi W Durage, Lina Kattan, SC Wirasinghe, and Janaka Y Ruwanpura. Evac-

uation behaviour of households and drivers during a tornado: Analysis based on

a stated preference survey in calgary, canada. Natural Hazards, 71:1495–1517,

2014.

FEMA. Hazus Earthquake Model Technical Manual. Technical re-

port, Federal Emergency Management Agency, 2022. URL https:

//www.fema.gov/sites/default/files/documents/fema_

hazus-earthquake-model-technical-manual-5-1.pdf. Ac-

cessed: 2023-02-27.

Elizabeth Fussell, Narayan Sastry, and Mark VanLandingham. Race, socioeco-

nomic status, and return migration to new orleans after hurricane katrina. Popu-

lation and environment, 31(1):20–42, 2010.

Yue Ge, Yongtao Gu, and Wugong Deng. Evaluating china’s national post-disaster

plans: The 2008 wenchuan earthquake’s recovery and reconstruction planning.

International Journal of Disaster Risk Science, 1(2):17–27, 2010.

Roberto Gentile, Gemma Cremen, Carmine Galasso, Luke T Jenkins, Vibek Man-
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