All articles in *Structures* are available free of charge to paying-grade members of the Institution as one of their membership benefits.

The journal is available online at: www.structuresjournal.org

Read the latest issue

The Featured Article for Volume 60 of *Structures* is now available. Ashraf Ashour, Associate Editor, has chosen a paper on a slidingbased isolation system with the aim of enhancing the seismic performance of masonry structures.

This article is available free of charge.

Editor's Featured Article

Experimental investigation of slidingbased isolation system with re-centering functions for seismic protection of masonry structures

Amir Ali^{a,b}, Chunwei Zhang^a, Tayyaba Bibi^c and Li Sun^d

^a School of Marine Science and Engineering, South China University of Technology, Guangzhou, China

^b Department of Civil Engineering, Lakehead University, Ontario, Canada

° Department of Civil Engineering, Abasyn

University, Peshawar, Pakistan

^d School of Civil Engineering, Shenyang Jianzhu University, Shenyang, China

Stanzi d Oniversity, Sheriyang, Ohina

A sliding-based isolation system is an efficient strategy to enhance the seismic performance of low-rise brick masonry buildings, a common type of construction across the globe. The previously developed isolation systems lack a proper re-centring mechanism. Therefore, in this study, a low-cost isolation system, termed reinforced cut wall (RCW) with an appropriate re-centring mechanism, is designed and tested experimentally using a shake table, which hasn't been tested previously. Two unconfined reduced scale (1:3) brick masonry buildings were subjected to frequency-based seismic excitation, and the model's corresponding acceleration and displacement response were captured.

Spotlight on

Structures

Compared with the fixed base model, considerable reductions were observed in the acceleration and displacement response in the case of the isolated model. Similarly, the inter-story drift and floor relative displacement response was also reduced in the isolated model. Furthermore, the rebars used for the re-centring mechanism remained within the linear viscoelastic range. Based on the experimental validation, the proposed low-cost RCW isolator was found to be an efficient isolation strategy for low-rise masonry buildings in high seismic regions.

 \rightarrow Read the full paper at https://doi. org/10.1016/j.istruc.2024.105871

Register for alerts If you'd like to receive regular updates about new content in *Structures*, register for email alerts at www.sciencedirect.com.